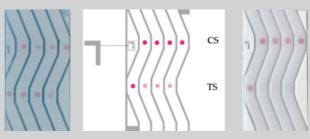
NALFA

CONTRACT DEVELOPMENT

NUCLEIC ACID BASED LATERAL FLOW ASSAY DEVELOPMENT SERVICE Elevate your research and products with us!

Looking to revolutionize diagnostic and forensic testing? Do you want to transfer your PCR assays to LFA strips?


Partner with our expert team for the contract development of Nucleic Acid-based Lateral Flow Assays (LFAs). Nucleic Acid-based Lateral Flow Assays (NALFAs) offer higher sensitivity and specificity compared to antibody-based LFAs, enabling the detection of lower quantities of target molecules. NALFAs are less prone to cross-reactivity, reducing false positives. They can detect a broader range of targets, including those for which antibodies may not yet be available. However, NALFAs may require more complex preparation and handling, but their enhanced accuracy can be crucial for critical diagnostics. We specialize in custom NALFA development, ensuring high sensitivity, specificity, and rapid results tailored to your needs.

Benefit from our state-of-the-art technology, rigorous quality control, and expertise in this field. Enhance your research and products — reach out to us today to upgrade your solutions.

BENEFITS OF NALFA AND OUR SERVICE AT A GLANCE

- High Sensitivity and Specificity: Achieve superior detection limits and precise identification of target nucleic acids.
- + Custom Assay Design: Tailored solutions to meet specific diagnostic needs and research goals.
- + Reduced Cross-Reactivity: Minimize false positives and enhance test reliability.
- + Expertise and Experience: Leverage our team's extensive knowledge in nucleic acid diagnostics for optimized assay performance.
- + State-of-the-Art Technology: Utilize cutting-edge tools and methodologies for advanced assay development.
- + Rigorous Quality Control: Ensure high standards of accuracy, reproducibility, and consistency in assay results.
- + Fast Turnaround: Efficient development processes to deliver results promptly.
- + Comprehensive Support: Ongoing technical assistance and consultation throughout the development process and beyond.

Subhashini, N.; Kerler, Y.; Menger, M. M.; Böhm, O.; Witte, J.; Stadler, C.; Griberman, A. Enhancing Colorimetric Detection of Nucleic Acids on Nitrocellulose Membranes: Cutting-Edge Applications in Diagnostics and Forensics. Preprints 2024, 2024072267. https://doi.org/10.20944/preprints202407.2267.v1